
Python, pip, setuptools, PyPI, oh my!

BV

[2014-09-03 Wed 13:11]

I started to use PyPI to distribute releases of Worch and related Python
packages. This is new territory for me so this topic captures my understand-
ing

1 Package layout

1.1 The setup.py �le

The setup.py �le describes how the package source area is organized. I put
Python modules either at top-level or under python/. In the latter case one
needs to add this keyword argument to the setup() function.

package_dir = {"": "python"},

The rest of this section gives other parts of setup.py which are associated
with an additional �le.

1.2 The requirements.txt �le

Any dependencies are asserted in requirements.txt:

worch == 1.2.1

ups-utils == 0.1

and brought into setup.py with:

install_requires = [l for l in open("requirements.txt").readlines() if l.strip()],

Maybe there is a nicer way?. . . .
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1.3 The MANIFEST.in �le

Files that are not picked up by "python setup.py sdist can be added to
MANIFEST.in

include requirements.txt

include examples/*.cfg

recursive-include examples *.cfg

Files that should be installed need to be declared to setup() like:

data_files = [('target/path', glob('source/path/*'),]

Here is how to handle a recursive set of data_files so that the directory
structure is preserved:

import os

from glob import glob

setup(...

data_files = [('blah', glob('blah/*'))] + \

[('prefix/path/'+x[0],

map(lambda y: x[0]+'/'+y, x[2])) for x in os.walk.('thedir')]

...)

2 Package production

To make a local package:

1. Check and update the version string in setup.py

2. Maybe git commit and git tag

3. python setup.py sdist

The package is under dist/ and can be installed with pip install

dist/pkg-X.Y.tar.gz.

3 Dependencies

Package dependencies are encoded in to the requirements.txt �le as above
and with explicit equality relations asserted.
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4 Release

1. hack and commit

2. bump version number in setup.py

3. commit and tag

4. git push && git push --tags

5. python setup.py sdist upload

5 Distribution

Use PyPI. Register for an account and for each new package register it:

$ python setup.py register

To upload:

(check and update version in setup.py)

$ git commit -a -m "...."

$ git tag X.Y.Z

$ git push --tags

$ python setup.py sdist upload

6 Installation

Once in PyPI, installation is trivial.

$ virtualenv venv

$ source venv/bin/activate

$ pip install the-package

7 Development

To set up for development, follow normal installation as above and then:

$ pip uninstall -y the-package

$ git clone git@github.com:brettviren/the-package.git

$ cd the-package
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$ python setup.py sdist

$ pip install dist/the-package-X.Y.Z.tar.gz

(hack)

$ pip uninstall -y the-package

$ pip install dist/the-package-X.Y.Z.tar.gz

8 Managing all this

A system to manage releases would be helpful.

8.1 Problems

While incredibly nice from the point of view of the installer/user, this orga-
nization comes at a price on the developer. Some issues:

8.1.1 Tight coupling of dependency versions.

The Internet tells me that I should put equality assertions in the requirements.txt
�le. When a bug is found and �xed in a low-level package its version number
is bumped and a new release is made. For an installation of a high-level pack-
age to gain this �x the low-level version number in the requirements.txt

�le needs to be updated and a new high-level package release made.

8.1.2 Developing on the stack

Setting up and maintaining a development environment requires getting sev-
eral repositories in place. Hacking on their code and then installing them is
error prone if done manually. A global "make install" type thing is needed
to do all the sdist/pip dancing.

8.1.3 Release management

Making a release requires some actions to be coordinated:

� change version in setup.py

� test locally

� git commit and git tag with the version

� git push and upload to PyPI
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� test from PyPi

Ways to tweak the version string in setup.py after a release to make it
be di�erent and indicate one is in a development phase.

8.1.4 Status

Some way to know the status of all the repositories:

� are they dirty with uncommitted/modi�ed �les?

� are they "o� tag" (setup.py version says one thing, but not git tag

9 Best practices:

http://pytest.org/latest/goodpractises.html use virtualenv and pip,
look into tox

http://dcreager.net/2010/02/10/setuptools-git-version-numbers/ set
version from git. Use setup.cfg �le in dev branch to tack on
dev-YYYYMMDD to version string, but do better. Use get describe

--tags --match "[0-9]*\.[0-9]* to generate version number based
on the last tag

10 UI

I want some groovy tool where I can automate some of this stu�. It might
look a bit like Google repo in parts. I want to use it like:

<cli> status --cloned

--> list cloned repositories

<cli> status --available

--> list available repositories

<cli> repo add <name> <url> [dep1 ...]

--> make a repository available

<cli> project add <name> [repo1 ...]

--> add a project with zero or more repositories

<cli> project list

--> list repositories in project
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<cli> project clone

--> clone repositories in project

<cli> project versions

--> show version of each repository as per setup.py and git-describe

...

It needs a name. . . .
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